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SPHERICAL METHOD FOR MEASUREMENT OF ANGULAR VELOCITY

G.S. NUSHOLTZ Chrysler Motors Corp.
JAINPING WU Creative Industries Gp.(D.I.E.)

ABSTRACT:

The goal of this research has been to develop a measurement
system using linear accelerometers to determine the 3-D motion
of various dummy components during impact. The spherical procedure
was developed to track dummy motion when film documentation
was not reasonable, such as during air bag deployment. the
procedure uses three or more accelerometer triaxial clusters
for assessment of angular velocity and linear acceleration.
From these measurements, angular acceleration and position, and
linear velocity and position are derived.

INTRODUCTION:

The concept used is different from other procedures which estimate
three dimensional motion from linear accelerometer mounted
at various locations on a rigid body. The approach used
by most other methods is to view the structure undergoing 3-D
motion as a rigid body with 3 components of linear
acceleration and three components of angular acceleration.
These approaches generally find the acceleration gradient
across the rigid body and then interpolate this gradient as a
combination of angular acceleration and angular velocity.
Through various mathematical procedures and digital data
manipulation, the angular acceleration is derived and then the
angular velocity is obtained by integration. The spherical
method is derived from concepts used in the geometric methods
currently being applied to fundemental physics problems (1-5). 1In
the spherical method presented here, each triaxial cluster is
viewed as a point moving on a sphere. The velocity of each moving
point with respect to the center of the sphere 1is obtained
through algebraic multiplication of its specific triaxial cluster
acceleration in its local instrument frame. Once the 1liner
velocity of each moving point on the sphere is obtained, the
angular velocity and the angular acceleration can be derived
algebraicaly.

TWO DIMENSIONS:

To understand the method of finding the three dimensional motion
that the spherical procedure uses, it is instructive to first look
at the two dimensional case. Assume that there are two orthongonal
accelerometer arrays on a flat disk (Figure 1). The linear
acceleration is obtained by summing the two accelerations.
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the tangential acceleration At along the disk surface is

A = A - A t

x2 I or A = A - A
I x1
The tangential velocity (along the disk surface) is not as easily
obtained. This is because there are two solutions to the velocity

equations:

1

+ /2
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However, it is easy to determine the correct velocity by a short
duration integration of the tangential acceleration starting from
a previous velocity

T2 t

Ve, ITi AT dt = Vs

then choose the result closest to zero:
(+v - sz)
(-v - Vrz)

The angular acceleration is then

The angular velocity becomes

\4

W = R

If there is noise or error in the system, then in general:

W # J @dt

Al though, in three dimensions, the equations become more
complicated, the basic principles are the same.
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THREE DIMENSIONS:

The following discussion gives a general overview of how this
spherical method procedure calculates angular velocity.

Consider three triaxial accelerometers constrained to move on a
sphere (Figure 2), which is free to translate without rotation.The
rotational motion of the rigid body is represented by the movement
of the triaxial accelerometer clusters on the surface.

Consider that two of the accelerations of each of the triaxial
clusters are tangent to the sphere and that the third is normal
to the sphere.

Assume (x1,y1,z1), (x2,y2,z2), (x3,y3,z3) are the local coordinate
systems used for each of the three triaxes on the sphere.
Let(I,J,K) be the global instrument frame, and (x,y,z) be the
laboratory frame, then:

(5] - Led (3] Le] (2]

Where the Ell’s are the directional cosines or transformation

matrix between local coordinate systems, and
I x1 x2 x3
J = D1 y1 = D2 X2 = D3 x3
K z1 z2 z3

Where the Di’s are the directional cosines or transformation
matrix between the local and global coordinate systems.

In the (I,J,K) coordinate system:

3
A= E G, B
1

wWwhere the Ci’s are the coefficients derived from the relative
locations of the 3 triaxes, and the Aij are the ith acceleration

of the jth triax in the global instrument frame. A, is the

component acceleration in the (I,J,K) coordinate system.
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The acceleration of each triax that is related to motion on the
sphere surface in the global instrument frame is:

Asij = A T A ;

Transform the ASij acceleration into the local coordinate system
ASX1 -1 AS11
ASY1 = D 1 AS21
AS31

ASz1
is the resultant velocity of

In the local instrument frame, Vlu
each triax as it moves on the sphere. , is the normal
acceleration for each triax:
. _
Vgi dAxl g t
Axl = R and T = ZARi Vai

tangential acceleration, and R is the distance

Rﬂi is the resultant

Where At is the
from the sphere’s center to the local triax.

acceleration for the ith thriax.

In the local coordinate system, the velocity is only in 2

directions. Then

* B Vo T8 ey

A *V
y

yi i

- t
= ﬁi VRi

A * V,, (cosé cosp + sinb sind )

Ri

o



where 06i and ¢l are the angles related to the projections of the

acceleration and velocity vectors in the local coordinate system:

cos( 6 - ¢

Axy
e = A
Ri
t
AV A
Arccos[ AI vgl ] + : = 06
Ri Ri Ry

Since the experimental data are not exact and contain error, numerical
difficulties can result under the following conditions:

ARI* VR! ~ O

t
Ai AWo, ™ 0

A and A % 0
yi zi

when Ar‘ * Vn1 % O

An integration routine is used to obtain Vv 5 Vz

when Atvri % O then

Aylvylz Tkt zivzl
o) TR .
Azi i 2:4
Ayi
Azi {r;xiﬂ i vii ¥ vyl
when ﬁyi and nz are small, then an integration routine is used

to obtain VY and Vz.
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The above egquations, in general, result in two solutions for V.
However, the correct solution can be obtained by comparison of the
two solutions to an integration derived velocity, similar to the
two-dimensional case.

In the application associated with the spherical method presented
so far, no use has been made of the constraints which hold the
different triaxes at fixed locations on the sphere. Therefore, a
least squares routine is used to minimize error in the various
velocities, and to keep each triax at a fixed distance from every
other triax.

Once the velocity is obtained, then from

U:T.s’x_'r

©w can be derived in the least squares sense:

- o
AS = WX R + ®xV
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Once again, @ can be derived in the least squares sense.

COMPARISON OF THE PROCEDURES:

One method of determining the usefulness of a new analytical
procedure is to compare it to other similar procedures that are
already in use.

This procedure was compared, using artificially derived motion, to
two other multiple accelerometer techniques. The two other
procedures chosen were a least square (3-3-3) routine, and the
NHTSA version of the Wayne State University System (3-2-2-2). To
do this, four triaxial clusters were artificially created (Figure
3). Rigid body motion in all 6 dimensions were introduced (3
translations and 3 rotations). By appropriate choice of
accelerometers, this configuration can be used by any of the three
procedures to generate rigid body motion.

NOISE:

All three procedures produce correct motion in terms of angular
and linear acceleration, velocity, and position, when there is no
noise in the system. when noise 1is introduced into the
acceleration signals, then each of the three procedures produces
results that differs from the correct motion. The following types
of noise were introduced into each of the accelerometers:
Gaussian, low frequency, cross-axis and miscalibration. The
noise-produced acceleration error that was never greater than 17%
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of the resultant acceleration for each triax. This means that
during periods of high acceleration, the transducer time-history
is predominantly signal, and during low acceleration, the
transducer time history is predominately noise.

FILTERING AND DIFFERENTIATION:

The spherical procedures when compared to the NHTSA or least
square procedure 1is similar to transforming a problem of
integrating numeric procedures (low frequency Noise) into a
problem of differentiation and algebric numerical procedures (high
frequency noise). Therefore, different types of noise affect the
various procedures, differently. This effect is greater for the
angular velocity than it is for the angular acceleration. In
general, for short duration, impacts with significant
high-frequency components, the least squares and NHTSA procedure
track the angular velocity with a greater accuracy than the
spherical method. For long-duration impacts, the spherical method
tends to track the angular velocity better than the least squares
or NHTSA method. Therefore, it is more important to minimize high
frequency noise, such as Gaussian noise, for the spherical method
than it is for the least squares, or NHTSA procedure. Methods of
statistically reducing Gaussian noise have been presented
elsewhere (6). Once these procedures have been applied,
differentiation is completed in the frequency domain.

INTRODUCED SIGNALS:

A number of different artificial test signals with introduced
noise were evaluated. The artificial signals represent both
direct and indirect impacts to a rigid body. These artificial
signals were used to compare the three systems. However, for the
purpose of this paper, only the comparison of the NHTSA system to
the spherical system will be presented. One of the artificial
test signals having higher angular velocity than normally seen in
an impact environment was used to illustrate the general results
for mixed noise. The following comparison of the NHTSA system to
the spherical system, illustrates the general difference between
the spherical and other systems that obtain angular velocity from
integration.

COMPARISON :

Figure 4 illustrates the acceleration of one of the triaxes
presented in 1its instrument frame. This acceleration contains
both linear and angular components and represents what might be
measured in the laboratory in a test.

Figure 5 gives an example of the exact angular acceleration. In
this example, rotation is significant in all three directions.
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Figure 6 contains three angular accelerations. These angular
accelerations are the most significant component for: 1) the
exact angular acceleration, 2) the angular acceleration derived
from the NHTSA procedure, and 3) the solution derived from the

spherical procedure, in the global instrument frame. Thi; figure
illustrates the general results obtained for all of the different
test signals. In general, for both procedures, the angular

acceleration differs slightly from the true angular acceleration
by about the same amount.

Figure 7 contains nine angular velocities. This figure illustrates
the general result obtained from both procedures for all of the
different test signals. For both procedures, the angular velocity
differs from the true angular velocity. However, the spherical
procedure tends to be much closer after 75 msec.

Figure 8 contains nine angles in the laboratory frame. This
figure illustrates the divergence of the spherical method over
time from the exact signals. Because, for the spherical method,
the angles are obtained from integration of the angular velocity,

error will accumulate. However, as presented in the figure, the
error will not accumulate as fast as double integration of the
angular acceleration. The implication from this is that when

using the spherical method, if the signals are not exact,
integration of the angular acceleration does not produce accurate
angular velocities over long durations.

This procedure has been used to determine the motion of a vehicle
in a barrier crash as well as the motion of the pelvis and thorax
of a Hybrid III dummy. However, none of the motions observed in
these tests are as complicated as the mathematical simulation
above and comparisons have only been made to film data for
displacements. Therefore, these data have limited wutility in
terms of wvalidation, even though they represent a necessary
condition. One example is given: For the motion of the thorax of
a Hybrid III dummy during an air bag test (Figure 9). The crosses
in the figure are the displacements obtained from the film data.

OBSERVATIONS:

1: Angular velocity can be measured directly using
linear accelerometers.

2. The potential advantage of the spherical proéedure is in the
measurement of angular motion. Angular velocity will not diverge
or "blow up”. Error in the angular velocity of each point in time

will not in general accumulate, but represent the noise, or error
in the signal at that point in time.

3. Error in the angles of rotation, in the spherical procedure,

does not accumulate as fast as in those procedures that derive the
angles from double integration.
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4. In the spherical technique, when error 1is part of the
acceleration signal, the integration of the angular acceleration
does not equal the angular velocity.

S. For short-duration signals, the least squares technique, and
the NHTSA technique are more accurate 1in producing angular
velocity. How short the signals need to be for this to be true,

depends on the type of noise in the signals (for the test signals
used here that duration was 10-20 msec).
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PAPER: Direct Measurement of Angular Velocity
SPEAKER: Guy Nusholtz, Chrysler, C.I.G.
Question: Rolf Eppinger, NHTSA

Could you tell us a little about the physical configuration
of your accelerometers inside the dummy head?

Answer: First, it’s not in the dummy head. They're in the chest and
the pelvis. I can tell you about the proposed configuration in the
dummy head if you’re interested in that. There’s a couple of standard
positions in the dummmy head where you can place the accelerometers
and what we did was put one in the front, one on the top and one in
back on the skull cap and then there’s one over to the side in case
you want to use the 3-2-2 method. On the dummy thorax what we’ve done
was put one in the standard location and then on the side of the dum-
my, that steel structure, we just put two triax’s, just on the width
of the spine box. On the pelvis, we've got one on the standard pelvis
location and then we'’ve got two up above that where the soft rubber
abdomen sits.
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